Binärer Suchbaum: Unterschied zwischen den Versionen
Zeile 202: | Zeile 202: | ||
'''public ContentType search(BinaryTree pTree, ContentType pContent){''' | '''public ContentType search(BinaryTree pTree, ContentType pContent){''' | ||
// Abbruchbedingung: leerer Baum oder pContent ist null | // Abbruchbedingung: leerer Baum oder pContent ist null | ||
if (pTree.isEmpty() || pContent == null) { | if (pTree.isEmpty() || pContent == null) { |
Version vom 8. März 2018, 08:29 Uhr
Diese Seite entspricht dem Abi 17 (und folgenden)
Definition
Ein binärer Suchbaum ist ein Binärbaum mit einer zusätzlichen Eigenschaft:
- die Elemente im linken Teilbaum sind kleiner als die Wurzel; die Elemente im rechten Teilbaum sind größer als die Wurzel.
- Diese Eigenschaft gilt auch für alle Teilbäume eines binären Suchbaumes.
Wie kleiner bzw. größer definiert werden, hängt dabei vom Anwendungszusammenhang ab; bei Personen kann z.B. das Alter oder die alphabetische Ordnung des Nachnamens das wesentliche Ordnungskriterium sein.
Eigenschaften eines Suchbaumes
- In Binären Suchbäumen kann man sehr schnell Elemente finden (daher der Name...); vgl. Suchen von Elementen in einem Binären Suchbaum
- Der Inorder-Durchlauf (Links -> Wurzel -> Rechts) eines Suchbaumes ergibt genau die alphabetische Ordnung. (Zu den verschiedenen Durchlaufarten durch Binärbäume: s. Traversierung von Binärbäumen)
Schnittstelle des Zentralabiturs
Schnittstelle BinarySearchTree (PDF)
Erläuterungen zur Schnittstelle
Die Schnittstelle des Zentralabiturs besteht aus zwei Klassen:
BinarySearchTree
ist der eigentliche binäre Suchbaum.ComparableContent
: In einenBinarySearchTree
können nur Objekte eingefügt werden, die das InterfaceComparableContent
implementieren.ComparableContent
erzwingt die Implementierung der MethodenisEqual
,isGreater
undisLess
. Dadurch wird festgelegt, wie Objekte in den Suchbaum einsortiert werden.
Beispiel: Verwendung von BinarySearchTree
und ComparableContent
In einer Bibliothek soll der Buchbestand in einem Binären Suchbaum gespeichert werden, damit man schnell nach einem bestimmten Buchtitel suchen kann. Das heißt, das Ordnungskriterium für den Suchbaum ist die alphabetische Ordnung nach dem Titel der Bücher.
Im Detail sind für die Bibliothek folgende Methoden vorgesehen:
- suchen: Man übergibt einen Buchtitel und erhält das Buch
- buecherListeEinfuegen: Man übergibt eine Liste von Büchern, die - gemäß dem Ordnungskriterium Titel - richtig in den binären Suchbaum eingefügt werden.
Für die einzelnen Bücher werden lediglich Titel und Regalnummer gespeichert; die Regalnummer soll man nachträglich ändern können, den Titel nicht.
Objekte der Klasse Buch
sollen in einen binären Suchbaum eingefügt bzw. nach bestimmten Titeln gesucht werden. Dabei soll das Ordnungskriterium die alphabetische Ordnung nach dem Titel sein.
Implementationdiagramm
Erläuterungen:
- Bibliothek hat (=besitzt) einen
BinarySearchTree
, in dem nur Objekte vom TypBuch
gespeichert werden können. Buch
muss das InterfaceComparableCont
implementieren, damit es überhaupt imBinarySearchTree buecherBaum
gespeichert werden kann.- Das hat als Konsequenz:
Buch
muss die MethodenisEqual
,isGreater
undisLess
so überschreiben, dass die Bücher nach dem Titel verglichen werden.
Implementierung
public class Buch implements ComparableContent<Buch>{
private String titel;
private int regalNr;
public Buch(String pTitel, int pRegalNr){
titel = pTitel;
regalNr = pRegalNr;
}
public int getRegalNr() {
return regalNr;
}
public void setRegalNr(int regalNr) {
this.regalNr = regalNr;
}
public String getTitel() {
return titel;
}
public boolean isEqual(Buch pContent) {
Buch pBuch = pContent;
boolean ergebnis = false;
if(titel.equals(pBuch.getTitel())){
ergebnis = true;
}
return ergebnis;
}
public boolean isLess(Buch pContent) {
Buch pBuch = pContent;
boolean ergebnis = false;
if(titel.compareTo(pBuch.getTitel())<0){
ergebnis = true;
}
return ergebnis;
}
public boolean isGreater(Buch pContent) {
Buch pBuch = pContent;
boolean ergebnis = false;
if(titel.compareTo(pBuch.getTitel())>0){
ergebnis = true;
}
return ergebnis;
}
}
Jetzt können z.B. in einer Klasse Bibliothek
Objekte der Klasse Buch
in einen BinarySearchTree
eingefügt werden:
public class Bibliothek{
//hier werden die Buecher gespeichert
BinarySearchTree<Buch> buecherBaum;
public Bibliothek(){
buecherBaum = new BinarySearchTree<Buch>();
}
public void uebertrageListeInBaum(List<Buch> buecherListe){
for(buecherListe.toFirst(); buecherListe.hasAccess(); buecherListe.next()){
Buch aktuellesBuch = buecherListe.getContent();
buecherBaum.insert(aktuellesBuch);
}
}
public Buch suche(String pTitel){
// man muss erst ein Dummy-Buch erzeugen
// nach dem kann man dann suchen
Buch dummyBuch = new Buch(pTitel, -1);
Buch ergebnis = buecherBaum.search(dummyBuch);
return ergebnis;
}
}
Erläuterungen zur Methode public Buch suche(String pTitel)
:
Die Implementierung sieht auf den ersten Blick etwas eigenwillig aus, ist aber die einfachste und schnellste. Warum wird das so gemacht?
- In Objekten vom Typ
BinarySearchTree<Buch>
kann man nur nach Objekten vom TypBuch
suchen. - D.h. man muss erst ein
dummyBuch
erstellen, das den gewünschten Titel trägt. - Da
Buch
das InterfaceComparableContent
implementiert, kann man mithilfe vondummyBuch
die Methodesearch
aufrufen. search
gibt dann das "richtige" gesuchte Buch zurück.- WICHTIG:
ergebnis
ist das "richtige" Buch;dummyBuch
wurde nur dafür erstellt, damit man nach einem Titel suchen kann!
Die Klassen BinarySearchTree
und BSTNode
- Der BinarySearchTree hat einen
BSTNode
als einziges Attribut, er besteht also eigentlich nur aus einemBSTNode
. - Die Klasse
BSTNode
hat die Attributecontent
(Wurzelinhalt),left
undright
(linker und rechter Teilbaum). - Analog zu den Klassen Queue und Stack wird die Verbindung der Elemente der Datenstruktur also über die Nodes (auch hier: innere (Hilfs-)Klasse) umgesetzt.
Der Beginn der Klasse BinarySearchTree
:
public class BinarySearchTree<ContentType extends ComparableContent<ContentType>> {
private BSTNode<ContentType> node;
// usw...
Die innere (Hilfs-)Klasse BSTNode
:
private class BSTNode<CT extends ComparableContent<CT>> {
private CT content;
private BinarySearchTree<CT> left, right;
public BSTNode(CT pContent) {
// Der Knoten hat einen linken und rechten Teilbaum, die
// beide von null verschieden sind. Also hat ein Blatt immer zwei
// leere Teilbaeume unter sich.
this.content = pContent;
left = new BinarySearchTree<CT>();
right = new BinarySearchTree<CT>();
}
}
ComparableContent: Java-Quellcode
Das Interface ComparableContent
stellt sicher, dass nur Objekte in einen binären Suchbaum eingefügt werden, die man miteinander vergleichen kann. (Ohne Objekte als größer, gleich oder kleiner vergleichen zu können, wäre ein binärer Suchbaum natürlich sinnlos, man könnte keine Sortierung auf linke und rechte Teilbäume vornehmen.)
public interface ComparableContent<ContentType> {
public boolean isEqual(ContentType pContent);
public boolean isLess(ContentType pContent);
public boolean isGreater(ContentType pContent);
}
- Die Methoden werden in
ContentType
nur deklariert, aber nicht implementiert! - Jede Klasse, die
ComparableContent
implementiert (Syntax:public MyClass implements ComparableContent
), muss diese drei Methoden überschreiben und eine Implementierung anbieten.
Innerer Aufbau eines BinarySearchTree
Am einfachsten lässt sich ein BinarySearchTree konstruieren, wenn der BinarySearchTree einen BinaryTree besitzt und alle Aufgaben an ihn delegiert:
(Eine erbt-Beziehung ist nicht möglich, da es Methoden in BinaryTree gibt, die die Suchbaumstruktur des BinarySearchTree zerstören würden, z.B. setLeftTree.)
Suchen (search)
Die Klasse BinarySearchTree
bietet die Methode search
, um Elemente im Baum zu suchen.
Ist das Element enthalten, wird es zurückgegeben. Dies mag auf den ersten Blick sinnlos erscheinen, bietet aber die Möglichkeit, sich ein Objekt mit einem bestimmten Attributwert zu holen, indem man zunächst ein Dummy-Objekt erstellt, das mit dem gesuchten Objekt nur in diesem Attributwert übereinstimmt und sich damit das zugehörige wirkliche Objekt aus dem BinaryTree
sucht. (Die überschriebene Methode isEqual()
darf natürlich nur Gleichheit genau auf diesem Attribut testen!) -> s. auch Beispiel oben: public Buch suche(String pTitel)!
Binäre Suchbäume haben den Vorteil, dass man in ihnen sehr schnell Elemente suchen kann: Man muss nicht den ganzen Baum zu durchsuchen, sondern kann - ausgehend von der Wurzel - einen Pfad bis zum Blatt abgehen. Je nachdem, ob das gesuchte Element kleiner oder größer ist als der gerade betrachtete Knoten, biegt man rechts (bzw. links) ab. (In der Abiturklasse ist allerdings kein klassischer Pfaddurchlauf (mit while-Schleife etc.) umgesetzt, sondern eine rekursive Variante gewählt worden, die aber auch nur den einen notwendigen Pfad durchläuft.)
Implementierung (LK)
Die Rahmenmethode delegiert die Aufgabe an eine rekursive Methode, der als Parameter myTree
übergeben wird.
public ContentType search(ContentType pContent) {
return search(myTree, pContent);
}
public ContentType search(BinaryTree pTree, ContentType pContent){
// Abbruchbedingung: leerer Baum oder pContent ist null
if (pTree.isEmpty() || pContent == null) {
return null;
}
ContentType wurzel = pTree.getContent();
// Abbruchbedingung: die Wurzel enthaelt das Gesuchte!
if(wurzel.isEqual(pContent)){
return wurzel;
}
// rekursive Aufrufe - entweder fuer den linken oder den rechten Teilbaum
if (pContent.isLess(content)) {
// Element wird im linken Teilbaum gesucht.
ContentType links = search(pTree.getLeftTree(), pContent);
return links;
}
if (pContent.isGreater(content)) {
// Element wird im rechten Teilbaum gesucht.
ContentType rechts = search(pTree.getRightTree(), pContent);
return rechts;
}
// Dieser Fall sollte nicht auftreten.
return null;
}
Einfügen (insert)
Um Elemente in einen binären Suchbaum einzufügen, muss man ausgehend von der Wurzel einen Pfad bis zu einem leeren Knoten abgehen und dort den eizufügenden Inhalt hineinschreiben. Je nachdem, ob das gesuchte Element kleiner oder größer ist als der gerade betrachtete Knoten, biegt man rechts (bzw. links) ab. Sobald man einen leeren Knoten gefunden hat, ist man an der richtigen Stelle, wo man das Element einfügen kann. In der Abiturklasse wird diese Strategie rekursiv umgesetzt.
Implementierung (LK)
Wenn der BinarySearchTree leer ist, dann wird eingefügt, sonst ruft sich die Methode rekursiv für den linken bzw. rechten Teilbaum selber auf.
public void insert(ContentType pContent) {
// wenn pContent null ist, dann ist nichts zu tun.
if(pContent == null){
return;
}
if(this.isEmpty()){
// Stelle zum Einfügen gefunden!
myTree.setContent(pContent);
return;
}
ContentType wurzel = myTree.getContent();
if(pContent.isLess(wurzel)){
this.getLeftTree.insert(pContent);
return;
}
if(pContent.isGreater(wurzel)){
this.getRightTree.insert(pContent);
return;
}
}
Löschen (remove)
Die Klasse BinarySearchTree
bietet neben der Methode insert
auch die Methode remove
, mit der man ein Element aus einem Suchbaum löschen kann - und die Suchbaumstruktur bleibt gewahrt!
Das ist sehr angenehm, denn das Löschen von Elementen aus einem Suchbaum ist eine SEHR mühsame Angelegenheit, weil man genau darauf achten muss, dass die Suchbaum-Struktur nicht zerstört wird.
Im folgenden wird dargestellt, wie das Löschen von Elementen aus einem Binären Suchbaum funktioniert.
Implementierung einer Löschmethode
Diese Methode ist nicht relevant für das Zentralabitur!
Das Löschen von Knoten aus binären Suchbäumen ist insofern nicht ganz einfach, als man darauf achten muss, dass die Struktur des binären Suchbaums nicht zerstört wird.
TODO: Implementierung des Löschens auf Abi 2017 anpassen!!!
Strategie
Standardfall
- Den richtigen Knoten suchen: K0. Außerdem braucht man den Vorgänger von K0
- Suche im linken Teilbaum von K0 den Knoten, der am weitesten rechts ist: K1. Außerdem braucht man den Vorgänger von K1
- Hänge den (linken!) Nachfolger von K1 an den Vorgänger von K1.
- K1 ersetzt jetzt K0, d.h. der Inhalt von K1 wird jetzt in den Knoten K0 geschrieben.
Ausnahmefälle
- K0 ist ein Blatt → einfach löschen.
- Die Wurzel des Gesamtbaumes enthält das zu löschende Element
- TODO
- K0 hat keinen linken Teilbaum → Der Nachfolger von K0 ersetzt K0, d.h.:
- Im Vorgänger von K0 wird der Nachfolger von K0 als (richtigen!) Nachfolger eingetragen.
benötigte Methoden
public boolean istBlatt(BinaryTree pTree)
public BinaryTree findeK0Vorgaenger(BinaryTree pTree, Object pObject)
public BinaryTree findeK1Vorgaenger(BinaryTree pTree)
Implementierung
public void loeschen(BinaryTree b, String zahl) {
if(b.isEmpty())
{
return;
}
// wenn das zu loeschende Element die Wurzel ist:
// 1. an einen Vater-Knoten anhaengen
// 2. loeschen
// 3. vaterknoten wieder wegnehmen
if(b.getObject().equals(zahl)){
BinaryTree vater = new BinaryTree("-999999");
vater.setRightTree(b);
loeschen(vater, zahl);
b = vater.getRightTree();
return;
}
BinaryTree K0vorgaenger = this.findeVorgaengerKnoten(b,zahl );
System.out.println("Vorgänger von K0:" + K0vorgaenger.getObject());
boolean K0haengtLinksAmVorgaenger = true;
BinaryTree K0 = K0vorgaenger.getLeftTree();
if(!K0vorgaenger.getRightTree().isEmpty() &&
zahl.equals(K0vorgaenger.getRightTree().getObject()))
{
K0 = K0vorgaenger.getRightTree();
K0haengtLinksAmVorgaenger = false;
}
String K0String = (String) K0.getObject();
System.out.println("K0String: "+K0String);
if(istBlatt(K0)){
System.out.println("istBlatt!");
if(K0haengtLinksAmVorgaenger){
K0vorgaenger.setLeftTree(new BinaryTree());
}
else{
K0vorgaenger.setRightTree(new BinaryTree());
}
return;
}
if(K0.getLeftTree().isEmpty()){
K0.setObject(K0.getRightTree().getObject());
K0.setLeftTree(K0.getRightTree().getLeftTree());
K0.setRightTree(K0.getRightTree().getRightTree());
return;
}
BinaryTree K1vorgaenger = vorgaengerVonAmWeitestenRechts(K0.getLeftTree());
System.out.println("K1vorgaenger: " + K1vorgaenger.getObject());
BinaryTree K1 = K1vorgaenger.getRightTree();
System.out.println("K1: " + K1.getObject());
K1vorgaenger.setRightTree(K1.getLeftTree());
K0.setObject(K1.getObject());
return;
}
private boolean istBlatt(BinaryTree pTree) {
boolean ergebnis = pTree.getLeftTree().isEmpty() && pTree.getRightTree().isEmpty();
System.out.println("istBlatt("+pTree.getObject()+"): "+ergebnis);
return ergebnis;
}
private BinaryTree vorgaengerVonAmWeitestenRechts(BinaryTree pTree) {
System.out.println("vorgaengervonAmWeitestenRechts("+pTree.getObject()+")");
if(pTree.getRightTree().isEmpty()){
System.err.println("Fehler in vorgaengerVonAmWeitestenRechts");
return null;
}
if(pTree.getRightTree().getRightTree().isEmpty()){
return pTree;
}
BinaryTree ergebnis = this.vorgaengerVonAmWeitestenRechts(pTree.getRightTree());
return ergebnis;
}
private BinaryTree findeVorgaengerKnoten(BinaryTree pTree, String zahl)
{
System.out.println("findeVorgaengerKnoten("+pTree.getObject()+", "+zahl+")");
if(zahl.equals(pTree.getObject())){
System.err.println(zahl+"ist die Wurzel von pTree selber!!!");
return null;
}
boolean gefunden = false;
int zahl1 = Integer.parseInt(zahl);
BinaryTree ergebnis = pTree;
while(gefunden == false){
String wurzelString = (String) ergebnis.getObject();
int wurzelInt = Integer.parseInt(wurzelString);
System.out.println("wurzelInt" + wurzelInt);
System.out.println("zahl" + zahl);
System.out.println("ergebnis.getObject(): " + ergebnis.getObject());
if(zahl.equals(ergebnis.getRightTree().getObject()) ||
zahl.equals(ergebnis.getLeftTree().getObject()))
{
gefunden = true;
}
else
{
if(zahl1 < wurzelInt){
ergebnis = ergebnis.getLeftTree();
}
else{
ergebnis = ergebnis.getRightTree();
}
}
}
return ergebnis;
}